
Journal of Applied Mechanics and Technical Physics, Vol. 44, No. 1, pp. 122–128, 2003

PROPAGATION OF QUASIACOUSTIC PULSES IN AN ELASTOPLASTIC MEDIUM

UDC 534.222+539.374N. N. Myagkov

Expressions for the velocity of a plastic shock wave and phase velocity of longitudinal waves in an
elastoplastic medium with hardening are obtained in a quasiacoustic approximation. An analytical
solution of the problem of shock-pulse attenuation is constructed. A special feature of the amplitude
of the attenuating plastic shock wave is that it reaches the amplitude of the elastic precursor in a
finite time, whereas in hydrodynamics, the amplitude of a quasiacoustic shock pulse tends to zero
asymptotically.
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Introduction. Studying the evolution of nonlinear waves generated by explosive or shock loading of mate-
rials and structures is of scientific and practical interest. These studies are usually performed under conditions of
pulsed loading with pressure amplitudes varying from several pascals to tens of gigapascals [1]. In this case, one can
usually assume that the waves generated are weak in the sense of the small ratio of pressure to the bulk modulus
of the material and use approximate relations of nonlinear acoustics [2, 3] to model shock-wave processes.

In the present paper, the propagation of nonlinear acoustic waves in an elastoplastic medium is studied using
the model proposed in [4].

1. Stationary Shock Waves. We consider propagation of plane longitudinal waves under uniaxial strain.
In this case, the quantities governing the propagation of these waves are functions of a single variable X − Drmt

(X = x1|t=0 and Drm is the Lagrange phase velocity of wave propagation). Let a compression wave bring the
medium from the state (ρ, u1, σ1, τ)r as t → −∞ to the state (ρ, u1, σ1, τ)m as t → ∞. Here τ = −(σ1 − σ2)/2,
σi are the principal stresses, u1 is the velocity of the medium, and ρ is the density. The laws of conservation imply
the relations (internal-friction viscosity and heat conduction are ignored)

u1 − (u1)r = ρ0Drm(1/ρr − 1/ρ), σ1 − (σ1)r = −(ρ0Drm)2(1/ρr − 1/ρ),
E − Er + (σ1 + (σ1)r)(1/ρr − 1/ρ)/2 = 0,

(1)

where E is the internal energy. Equations (1) describe both smooth and discontinuous jumplike variations of
quantities in the wave. It is well known that the internal energy of an isotropic medium is a function of the strain-
tensor invariants and entropy S. For convenience, this dependence can be written as E = E(ρ,D,∆, S), where D
and ∆ are the invariants of the deviator of the effective elastic-strain tensor [5].

We introduce the small parameters ε (ratio of the stress amplitude to the bulk modulus) and ν = (C2
long −

C2
0 )/(2C2

0 ) = 2G/(3ρ0C
2
0 ) (G is the shear modulus, Clong is the phase velocity of the longitudinal elastic waves,

and C0 is the volume velocity of sound). Thus, the stress-deviator components are assumed to be quantities of a
higher order of smallness compared to the average stress [dimensionless average stress is a quantity of order O(ε)].
We expand the internal energy E into a power series of the increments in density ρ′ = (ρ − ρ0)/ρ0 and entropy
S′ = T0(S − S0)/C2

0 and invariants D and ∆ with allowance for ∂E/∂D
∣∣∣
0

= 2G/ρ0 and retain terms up to the
second order of smallness in the hydrodynamic part of the stress tensor. As a result, we obtain

σ′1 = σ1/(ρ0C
2
0 ) = −[ρ′ + αρ′2/2 + ΓS′ +O(ε3 + ε2ν)]− 3ν(ψ +O(ε2)). (2)

Here ψ = 2τ/(3G), the parameter α = 4 + ρ3
0Eρρρ

∣∣∣
S
/C2

0 is determined from the equation of state and can be
calculated, for example, in terms of the adiabatic derivative of the bulk modulus with respect to pressure, determined
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Fig. 1

from the available experimental data of [6], T0 is the initial temperature, and Γ is the Grüneisen coefficient. The
amplitude ψ depends on the quantity Y/(3G) (Y is the tensile yield point). For metals, we have Y/(3G) ∼ 10−3;
therefore, despite the fact that the introduced small parameter ν is rather “large” for metals (ν 6 0.3), the term
3νψ in (2) is small compared to the leading term of the expansion |ρ′| ∼ ε. For stresses that occur in typical
shock-wave tests, we have ε ∼ 0.1.

System (1), (2) implies the relations for the entropy increment, velocity Drm, and dependence ψ(ρ′):

[S′] = (α+ 2)[ρ′]3/12 + (9/4)ν(ψm + ψr)[2ρ′/3− ψ] +O(ε4 + ε3ν); (3)

(Drm/C0)2 = 1 + (α+ 2)(ρ′r + ρ′m)/2 + 3ν[ψ]/[ρ′] +O(ε2 + εν); (4)

3ν(ψ − ψr)/2 = δ(ρ′ − ρ′r)− (α+ 2)(ρ′2 − ρ′2r )/4 +O(ε2 + εν), (5)

where [ · ] = ( · )m − ( · )r and δ = (D2
rm/C

2
0 − 1)/2. The first and second terms on the right side of Eq. (3)

determine the increments in entropy due to variation in density in the shock wave and the work done in plastic
strain, respectively. Relation (5) describes possible states inside the wave and determines the dependence of the
shear stress (9/4)ν(ψ − ψr) on the true strain ρ′. To obtain stationary solutions, one should combine relation (5)
with a constitutive equation relating ψ and ρ′.

For small strains, the quantity ψ is related to the plastic strain by the formula

ε̇p1 = −2ρ̇′/3 + ψ̇ (6)

(the dot denotes the derivative with respect to time).
We consider a model of an elastoplastic medium of the Prandtl–Reuss type and Mises yield criterion for the

case of uniaxial strain. Using the notation introduced, we write the governing equations as

ψ̇ = 2ρ̇/3 for |ψ| 6 ψ∗, ψ = ψ∗ signψ for |ψ| > ψ∗. (7)

Here ψ∗ = Y/(3G). We first consider the case of a constant yield point (Y = const). An elementary analysis
of Eqs. (5) and (7) gives the following results. For ρ′r = ψr = 0 (the wave propagates over an undisturbed
medium), there can exist a unique stationary solution for ρ′m > ρ′∗ (ρ′∗ = 3ψ∗/2) in the form of a sequence of two
strong discontinuities (shock waves). In the elastic shock wave, the medium is brought in a jumplike manner from
the state (0,0) to the state (ρ′∗, ψ∗); in the plastic shock wave, it is brought from the state (ρ′∗, ψ∗) to the state
(4ν/(α+ 2), ψ∗), i.e., the amplitude of the stationary wave is given by ρ′m = 4ν/(α+ 2) and ψm = ψ∗. In this case,
δ = (α + 2)ρ′∗/4 + ν. Figure 1 shows the dependence ψ(ρ′) [formula (5)]. The phase shift between the jumps is
indeterminate (it may be arbitrary); only the sequence of the jumps is determined. If ρ′m > 4ν/(α+ 2), the plastic
shock wave overtakes the elastic shock wave; otherwise, it lags behind the elastic shock wave.

We further use the model of isotropic hardening in which the yield point depends on the scalar parameter Λ.
We write the flow law in the form

dεpij = (3/4)sij dΛ/
√

(3/8)sklskl. (8)

Here εpij are the components of the plastic-strain tensor and sij are the stress-deviator components. It follows
from (8) that the parameter Λ is related to the hardening parameter W p, which is equal to the work done in
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plastic strains, by the transformation dW p = Y (Λ) dΛ. Integration and substitution of W p = ϕ(Λ) into the known
dependence Ys(W p) yields Y (Λ) = Ys(ϕ(Λ)). A similar transformation was used in [7]. Using (6) and (8), we obtain
Λ̇ = 2ρ̇′/3− Ẏ /(3G) for the plastic wave. Integrating this equation with the initial conditions Λ = 0, ρ′ = ρ′∗, and
Y (0) = Y0 and taking into account the relation ρ′∗ = Y0/(2G), we obtain

Λ = 2ρ′/3− Y/(3G). (9)

Thus, given the relation Y = Y (Λ), one can obtain a stationary solution for the elastoplastic wave by setting
ρr = ρ∗, ψr = ψ∗ and δ = (α+2)ρ′∗/4+ν in Eq. (5) and solving it simultaneously with Eq. (9). In particular, from (5)
there follows the relation Ym − Y0 = 2G(ρ′m − ρ′∗)(1− (α+ 2)ρ′m/(4ν)), which shows that stationary waves with an
amplitude ρ′∗ < ρ′m < 4ν/(α+ 2) can occur in a hardening medium Ym > Y0. In the case of Y (Λ) = Y0 + Y1Λ (Y0

and Y1 are constants), for ρ′ > ρ′∗, one can construct a solution in the form of a plastic shock wave that brings the
medium from the state (ρ′∗, ψ∗) to the state with parameters ρ′m = 4ν(1−k)/(α+2) and ψm = ψ∗+k(2ρ′m/3− ψ∗),
where k = (1 + 3G/Y1)−1, 0 < k < 1− (α+ 2)ρ′∗/(4ν), ρ′∗ = Y0/(2G), and ψ∗ = Y0/(3G).

Relation (4) is valid for jumplike variations of quantities in any longitudinal wave (in this case, the subscripts
m and r refer quantities immediately ahead of and behind the jump) for any elastoplastic medium, since the
constitutive equation was not used in deriving relation (4). Discontinuous solutions in the form of shock waves exist
owing to the nonunique profile of the wave formed as a result of tumbling of the initially smooth solution, where
the Lagrange propagation velocity of fixed strain levels C(ρ′) increases with ρ′. In this approximation, we obtain

C2 =
(dX
dt

)2∣∣∣
ρ′

= C2
0

(
1 + (α+ 2)ρ′ + 3ν

( ∂ψ
∂ρ′

)
X

)
+O(ε2 + εν). (10)

It should be noted that expression (10) can be obtained from (4) if [ρ′] and [ψ] tend to zero simultaneously and
ρ′r → ρ′ and ρ′m → ρ′. In this case, one can construct a discontinuous solution and determine the front location using
the so-called equal-area rule [2, 3]. We show that the velocity of the shock-wave front determined by formula (4)
satisfies this rule. Let the discontinuity occupy the position t = tp(X) at a given moment (Fig. 2). The shaded area
in Fig. 2 is equal to the integral

J =

ρ′2∫
ρ′1

(t(ρ′, X)− tp(X)) dρ′.

Here t(ρ′, X) is the dependence determined by relation (10). In Fig. 2, the shaded areas on the left and on the
right of the straight line t = tp(X) are equal. Differentiating the expression for J with respect to X, with allowance
for (4) and (10), we obtain

∂

∂X
J =

ρ′2∫
ρ′1

( 1
C(ρ′)

− 1
D12

)
dρ′ = O(ε3 + ε2ν).
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Obviously, the shaded area vanishes at the point where the discontinuity Xp occurs. Hence, by virtue of the
calculations performed, the equal-area rule is satisfied asymptotically for X > Xp, at least at distances X − Xp

6 O(ε−1).
Let us determine the velocities of shock waves and the velocities C(ρ′) for different constitutive equations.

For elastic strain, from (4), (6), and (10) we obtain

D2
rm = C2

long + C2
0 (α+ 2)(ρ′r + ρ′m)/2, C2 = C2

long + C2
0 (α+ 2)ρ′, (11)

where Clong is the phase velocity of longitudinal elastic waves in an undisturbed medium. For the plastic disconti-
nuity in the Prandtl–Reuss medium with the Mises yield criterion, from (6) and (8) we obtain

[Λ] = 2[ρ′]/3− [Y ]/(3G), [Λ] > 0. (12)

Substituting (12) into (4) and (10), we obtain expressions for the velocity of the plastic shock wave and Lagrange
propagation velocity of perturbations for active loading (ρ̇′ > 0), which have the following form in the model of a
hardening medium with the plasticity criterion Y (Λ):

ρ0D
2
rm = ρ0C

2
0

(
1 +

α+ 2
2

(ρ′r + ρ′m)
)

+
4
3

[Y ]
3[Λ] + [Y ]/G

,

(13)

ρ0C
2 = ρ0C

2
0 (1 + (α+ 2)ρ′) +

4
3
dY

dΛ

/(
3 +

1
G

dY

dΛ

)
.

Thus, the shock-wave velocity is uniquely determined by the known state ahead of the front and the value
of Λm (Λm > Λr) behind the front, using Eq. (12) and the specified relation Y (Λ). For small strains, the first
formula in (13) is identical to the formula of [8] if Y and Λ are expressed in terms of the shear yield point and the
hardening function of [8], respectively. For the ideal-plasticity model, the condition [Y ] = 0 holds, and from (13)
we obtain

D2
rm = C2

0 (1 + (α+ 2)(ρ′r + ρ′m)/2), C2 = C2
0 (1 + (α+ 2)ρ′). (14)

In this case, the formulas for velocities are similar to those used in nonlinear acoustics [2, 3]. The shock waves
should satisfy the stability condition [9]

C(ρ′r) < Drm < C(ρ′m). (15)

This condition has a simple physical meaning: the shock wave is subsonic with respect to particles immediately
behind the front and supersonic with respect to particles immediately ahead of the front. Condition (15) is valid for
shock waves in an elastic material (11), ideal plastic material (14) and, particularly, material with hardening (13)
where [Y (Λ)] = Y1[Λ].

2. Attenuation of a Shock Pulse in an Elastoplastic Medium with Hardening. Stress pulses
produced by thin impactors, short laser pulses, and detonation of layers of condensed explosives have a distinct
front and a region of gentle decrease. We consider the following problem. Let the pressure monotonically decreasing
with time be suddenly applied to the boundary z = 0 and z = X/(C0t0):

1
2
V (0, ξ) =

{
0, −∞ < ξ < 0,

F (ξ) (F (ξ) > 0, dF (ξ)/dξ < 0), 0 6 ξ < +∞. (16)

Here V = −2σ′1. We denote the current amplitude of the wave by Vm(z). On the boundary z = 0, we have
F (0) = Vm(0) = Vm0.

To describe the propagation of a shock pulse in a half-space, we use the model equation proposed in [4]:

∂V

∂z′
− 1

2
V
∂V

∂ξ
− 3ν′

∂ψ

∂ξ
= 0. (17)

Here ξ = t′ − z, z′ = z(α+ 2)/2, ν′ = 2ν/(α+ 2), and t′ = t/t0. Below, the primes at z and ν are omitted.
We use the constitutive equations of the deformation theory of plasticity and the model of linear hardening

according to the Prandtl scheme in which the Bauschinger effect is ignored and the tensile and compressive yield
points are assumed to be equal. For uniaxial deformation, the constitutive equations in the variables V and ψ have
the form (Fig. 3)

∂ψ

∂ξ
=

1
3
∂V

∂ξ
(18)
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Fig. 3 Fig. 4

for ψ < ψ∗ = Y0/(3G) and for Vm > V > Vm −∆V in the case of unloading, and

∂ψ

∂ξ
=

1
3
k
∂V

∂ξ
(19)

for V∗ 6 V 6 Vm in the case of loading and for Vm −∆V > V in the case of unloading. In (18) and (19), Y0 is the
yield point, and k = G′/G (G′ is the modulus of linear hardening of the material). It is obvious that

Vm −∆V = Vm(1− k)− V∗(2− k). (20)

If Vm0 6 4ν(1 − k), for z > 0, the strong-discontinuity wave is split into an elastic shock wave with an
amplitude V∗ (elastic precursor) and a plastic shock wave. The velocity of the latter is calculated by the formula
similar to that for calculating the velocity in an elastic medium (see Sec. 1):

dξp
dz

= −
[1

4
(Vm + V∗) + νk

]
(21)

(ξp is the coordinate of the front of the plastic shock wave). We further assume that the relation Vm0 6 4ν(1− k)
is valid.

For the unloading region, from (17)–(19) we obtain

dV

dz
= 0 for

dξ

dz
=
{
−(V/2 + ν), Vm > V > Vm −∆V,
−(V/2 + νk), Vm −∆V > V > 0.

(22)

We consider the interval of amplitude variation Vm(0) > Vm > Vm(0)−∆V (0) (Fig. 4). It follows from (20)
that Vm(0)−∆V (0) = Vm0(1−k)−V∗(2−k). In accordance with (22), the amplitude attenuation in this interval is
affected only by the elastic part of the profile specified on the boundary. Let ξ̃ be the coordinate of a point on the
profile (16), such that the value of V = 2F (ξ̃) lies within this interval: Vm(0) > V > Vm(0)−∆V (0). Relation (22)
shows that, at subsequent moments z > 0, this point has the coordinate ξ = F−1(V/2) − (V/2 + ν)z (F−1 is a
function inverse to F ). Substituting the values of ξ = ξp and V = Vm that correspond to the moment of intersection
of the characteristic with the shock-wave front into this relation and combining the resulting expression with (21),
after some transformations, we obtain the equation for Vm(z)

dVm
dz

= −1
2
Vm − V∗ + 4ν(1− k)
z − (F−1(Vm/2))′

. (23)

Here the prime denotes the derivative of F−1 with respect to the argument. This equation is supplemented by
the initial condition z = 0 and Vm(0) = Vm0. The solution is constructed up to z = z1 [z1 is determined from
relation (20): Vm(z1) = Vm0(1 − k) − V∗(2 − k)]. We assume that the solution of Eq. (23) is known and denote it
by Vm = f1(z).

Using (16) and (22), we construct the solution of the equation for the unloading region in the interval
0 < z 6 z1 (Fig. 4):
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1
2
V =


F (ξ + (V/2 + ν)z), Vm(z) > V > Vm(0)−∆V (0),

F (ξ + (V/2 + ν)z − (1− k)νzpe(V )), Vm(0)−∆V (0) > V > Vm(z)−∆V (z),
F (ξ + (V/2 + νk)z), Vm(z)−∆V (z) > V > 0.

(24)

Here zpe(V ) is the moment the elastic-unloading wave arrives at the point V , which lied initially in the plastic
region. The second equality follows from the relation

ξ = F−1(V/2)− (V/2 + νk)zpe − (V/2 + ν)(z − zpe) (25)

implied by (22). To calculate zpe(V ), it is necessary to consider the interval Vm(z1) > V > Vm(z1) − ∆V (z1).
The point V from this interval lies initially in the plastic region and then in the elastic region of the flow. The
moment zpe(V ) when the point crosses the boundary between these regions is determined from Eq. (20): f1(zpe)(1−
k)− V∗(2− k) = V , which yields

zpe = f−1
1 ((V + V∗(2− k))/(1− k)) (26)

(f−1
1 is a function inverse to f1). Thus, the known solution for the amplitude Vm = f1(z) with (20) and (26)

determines completely the unloading wave (24) in the interval 0 < z 6 z1.
We consider the interval Vm(z1) > Vm > Vm(z1) − ∆V (z1), where the amplitude varies (decays). Rela-

tions (25) and (26) for ξ = ξp and V = Vm combined with Eq. (21) yield the equation for the shock-wave amplitude
in this interval:

dVm
dz

= −1
2

Vm − V∗ + 4ν(1− k)
z − (F−1(Vm/2))′ − 2ν(f−1

1 ((Vm + V∗(2− k))/(1− k)))′
. (27)

Here the primes denote the derivatives with respect to the argument. The initial condition for Eq. (27) has the
form

z = z1, Vm(z1) = Vm0(1− k)− V∗(2− k).

Equation (27) is integrated up to z = z2 [z2 is determined from relation (20): Vm(z2) = Vm(z1)(1− k)− V∗(2− k)].
We assume that the solution is known in the interval z1 < z 6 z2. We denote it by Vm = f2(z). In the unloading
region, the solution for z from this interval has the form

1
2
V =



F (ξ + (V/2 + ν)z
− (1− k)νf−1

1 ((V + V∗(2− k))/(1− k))), Vm(z) > V > Vm(z2),

F (ξ + (V/2 + ν)z
− (1− k)νf−1

2 ((V + V∗(2− k))/(1− k))), Vm(z2) > V > Vm(z)−∆V (z),

F (ξ + (V/2 + νk)z), Vm(z)−∆V (z) > V > 0.

(28)

Similarly, for the nth interval zn−1 < z 6 zn, where z0 = 0 and zn is determined from the equation
Vm(zn) = Vm(zn−1)(1− k)− V∗(2− k) (n = 1, 2, . . . , N), the solution Vm(z) is found from Eq. (27), in which f−1

1

should be replaced by f−1
n−1 [Vm = fn−1(z) is the known solution from the preceding (n−1)th interval]. The solution

for the unloading wave is constructed in a similar manner as (28). The length of the sequence N is determined by
the wave amplitude: if V∗ lies within the Nth interval, the sequence is terminated, and the solution is constructed
up to Vm = V∗.

We consider the case where a triangular pulse is specified on the boundary z = 0, i.e., the function F in (16)
has the form

F (ξ) = Vm0(ξlong − ξ)/L0 for ξlong − L0 6 ξ 6 ξlong, F (ξ) = 0 for ξ > ξlong.

For n = 1, from (23) we obtain

z = b(y2
0/y

2 − 1), 0 < z 6 z1, z1 = b(y2
0/[(1− k)y0 − β]2 − 1), (29)

where y(z) = Vm(z) − V∗ + 4ν(1 − k), y0 = y(0), b = L0/Vm0, and β = 2V∗ − 4νk(1 − k). The solution for the
unloading wave is determined from (24):

1
2
V =


(ξlong − ξ − νz)/(z + b), Vm(z) > V > Vm0(1− k)− V∗(2− k),

(ξlong − ξ − νz − ν(1− k)zpe(V ))/(z + b), Vm0(1− k)− V∗(2− k) > V

> Vm(z)(1− k)− V∗(2− k),

(ξlong − ξ − νkz)/(z + b), Vm(z)(1− k)− V∗(2− k) > V > 0.

(30)
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Here zpe(V ) = b((1− k)2y2
0/(V − V∗ + 4ν(1− k) + β)2 − 1). At the internal boundary points, we have

zpe(Vm0(1− k)− V∗(2− k)) = 0 and zpe(Vm(z)(1− k)− V∗(2− k)) = z, i.e., the piecewise solution (30) is con-
tinuous for 0 < V < Vm(z). However, direct calculations show that the first derivative ∂V/∂ξ has a discontinuity
at these points.

For n = 2, we obtain

z + b = b
y2

0

y2

(
1 + 8ν(1− k)3

( y + β/2
(y + β)2

− y1 + β/2
(y1 + β)2

))
, z1 < z 6 z2. (31)

Here y1 = (1− k)y0 − β and z2 is determined from (31) if y is replaced by y2 = (1− k)y1 − β. The solution for the
unloading wave is found from (28).

Setting V∗ = ν = 0 in (29) or (31), we obtain a solution which is well known in hydrodynamics (in a
nonlinear-acoustic approximation) [2, 9]. A special feature of attenuation of the amplitude of the plastic shock
wave is that it reaches the amplitude of the elastic precursor V∗ in a finite time (in hydrodynamics, the shock-wave
amplitude tends to zero asymptotically as z →∞).
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